- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cassau, Sina (1)
-
Chen, Jingyuan (1)
-
Dong, Shuanglin (1)
-
Fandino, Richard A. (1)
-
Feistel, Felix (1)
-
Gershenzon, Jonathan (1)
-
Grosse-Wilde, Ewald (1)
-
Hansson, Bill S. (1)
-
Keesey, Ian W. (1)
-
Kingsolver, Joel (1)
-
Knaden, Markus (1)
-
Komail Raza, Syed Ali (1)
-
Mandel, Michael I. (1)
-
Parker, Anna L. (1)
-
Raza Syed, Ali (1)
-
Wei, Zhiqiang (1)
-
Zhang, Jin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Data Valuation in machine learning is concerned with quantifying the relative contribution of a training example to a model’s performance. Quantifying the importance of training examples is useful for identifying high and low quality data to curate training datasets and for address data quality issues. Shapley values have gained traction in machine learning for curating training data and identifying data quality issues. While computing the Shapley values of training examples is computationally prohibitive, approximation methods have been used successfully for classification models in computer vision tasks. We investigate data valuation for Automatic Speech Recognition models which perform a structured prediction task and propose a method for estimating Shapley values for these models. We show that a proxy model can be learned for the acoustic model component of an end-to-end ASR and used to estimate Shapley values for acoustic frames. We present a method for using the proxy acoustic model to estimate Shapley values for variable length utterances and demonstrate that the Shapley values provide a signal of example quality.more » « less
-
Zhang, Jin; Komail Raza, Syed Ali; Wei, Zhiqiang; Keesey, Ian W.; Parker, Anna L.; Feistel, Felix; Chen, Jingyuan; Cassau, Sina; Fandino, Richard A.; Grosse-Wilde, Ewald; et al (, Current Biology)
An official website of the United States government
